Optimizing a gamified design through reinforcement learning : a case study in stack overflow

Detalles Bibliográficos
Autor Principal: Martin, Jonathan
Otros autores o Colaboradores: Torres, Diego, Fernández, Alejandro
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-030-84825-5_7
Consultar en el Cátalogo
Resumen:Gamification can be used to foster participation in knowledge sharing communities. While designing and assessing the potential impact of a gamification design in such a context, it is important to avoid work disruption and negative side effects. A gamification optimization approach implemented with deep reinforcement learning based on play-testing approaches helps prevent possible disruptive configuration and has the capability to adapt to different communities or gamification targets. In this research, a case of study for this approach is presented running over the Stack Overflow Q&A community. The approach detects the best configuration for a Contribution, Reinforcement, and Dissemination (CRD) gamification strategy using Stack Overflow historical data in a year. The results show that the approach funds proper gamification strategy configurations. Moreover, those configurations are robust enough to be applied along the time unseen periods.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (358,4 kB)
DOI:10.1007/978-3-030-84825-5_7

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183247.0
008 230201s2021 xx o 000 0 eng d
024 8 |a DIF-M8322  |b 8542  |z DIF007615 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Martin, Jonathan  |9 49332 
245 1 0 |a Optimizing a gamified design through reinforcement learning :  |b a case study in stack overflow 
300 |a 1 archivo (358,4 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Gamification can be used to foster participation in knowledge sharing communities. While designing and assessing the potential impact of a gamification design in such a context, it is important to avoid work disruption and negative side effects. A gamification optimization approach implemented with deep reinforcement learning based on play-testing approaches helps prevent possible disruptive configuration and has the capability to adapt to different communities or gamification targets. In this research, a case of study for this approach is presented running over the Stack Overflow Q&A community. The approach detects the best configuration for a Contribution, Reinforcement, and Dissemination (CRD) gamification strategy using Stack Overflow historical data in a year. The results show that the approach funds proper gamification strategy configurations. Moreover, those configurations are robust enough to be applied along the time unseen periods. 
534 |a Jornadas de Cloud Computing, Big Data & Emerging Topics (9na : 2021 : La Plata, Argentina) 
650 4 |a OPTIMIZACIÓN  |9 44744 
653 |a gamificación 
700 1 |a Torres, Diego  |9 46465 
700 1 |a Fernández, Alejandro  |9 44681 
856 4 0 |u http://dx.doi.org/10.1007/978-3-030-84825-5_7 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A1182  |7 3  |8 BD  |9 83234  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A1182   |r 2025-03-11 17:05:10  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=2281  |w 2025-03-11  |y CP 
999 |c 57388  |d 57388