Optimizing a gamified design through reinforcement learning : a case study in stack overflow
Autor Principal: | |
---|---|
Otros autores o Colaboradores: | , |
Formato: | Capítulo de libro |
Lengua: | inglés |
Temas: | |
Acceso en línea: | http://dx.doi.org/10.1007/978-3-030-84825-5_7 Consultar en el Cátalogo |
Resumen: | Gamification can be used to foster participation in knowledge sharing communities. While designing and assessing the potential impact of a gamification design in such a context, it is important to avoid work disruption and negative side effects. A gamification optimization approach implemented with deep reinforcement learning based on play-testing approaches helps prevent possible disruptive configuration and has the capability to adapt to different communities or gamification targets. In this research, a case of study for this approach is presented running over the Stack Overflow Q&A community. The approach detects the best configuration for a Contribution, Reinforcement, and Dissemination (CRD) gamification strategy using Stack Overflow historical data in a year. The results show that the approach funds proper gamification strategy configurations. Moreover, those configurations are robust enough to be applied along the time unseen periods. |
Notas: | Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) |
Descripción Física: | 1 archivo (358,4 kB) |
DOI: | 10.1007/978-3-030-84825-5_7 |