Neural Networks Elitist Evolution

Detalles Bibliográficos
Autor Principal: Vinuesa, Hernán
Otros autores o Colaboradores: Lanzarini, Laura Cristina
Formato: Capítulo de libro
Lengua:español
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:This paper presents an elitist evolving strategy, which allows obtaining a controller, based on a neural network capable of commanding an autonomous robot. In order to reduce the detrimental crossover effect, we propose to use a strategy to create several children for each parent pair, selecting properly the way of making the replacement. The results obtained that, though the number ofchildren is high, the quantity of fitness tests carried out is actually lower than that of aconventional evolving algorithm. In this way, we propose an alternative that reduces thecomputational cost of the process, reaching at a suitable response for the problem resolution.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.)
Descripción Física:Datos electrónicos (1 archivo: 208 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183314.0
008 230201s2007 ag r 000 0 spa d
024 8 |a DIF-M3115  |b 3220  |z DIF008326 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Vinuesa, Hernán  |9 46409 
245 1 0 |a Neural Networks Elitist Evolution 
300 |a Datos electrónicos (1 archivo: 208 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) 
520 |a This paper presents an elitist evolving strategy, which allows obtaining a controller, based on a neural network capable of commanding an autonomous robot. In order to reduce the detrimental crossover effect, we propose to use a strategy to create several children for each parent pair, selecting properly the way of making the replacement. The results obtained that, though the number ofchildren is high, the quantity of fitness tests carried out is actually lower than that of aconventional evolving algorithm. In this way, we propose an alternative that reduces thecomputational cost of the process, reaching at a suitable response for the problem resolution. 
534 |a International Conference on Information Technology Interfaces (29th : 2007 : Duvrovnik) 
650 4 |a ROBÓTICA  |9 42942 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0228  |7 3  |9 84637  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0228  |r 2025-03-11 17:05:37  |w 2025-03-11  |y CP 
999 |c 58095  |d 58095