DER : dynamic evidential reasoning applied to hyperspectral images classification

Detalles Bibliográficos
Autor Principal: Sanz, Cecilia Verónica
Otros autores o Colaboradores: Jordan, Ramiro
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://goo.gl/1RJ32j
Consultar en el Cátalogo
Resumen:This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data- associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (67 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183157.0
008 230201s2002 xx o 000 0 eng d
024 8 |a DIF-M6856  |b 6992  |z DIF006261 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Sanz, Cecilia Verónica  |9 44793 
245 1 0 |a DER :  |b dynamic evidential reasoning applied to hyperspectral images classification 
300 |a 1 archivo (67 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data- associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision. 
534 |a Journal of Computer Science & Technology, 1(6) 
650 4 |a IMÁGENES  |9 36525 
650 4 |a RECONOCIMIENTO Y CLASIFICACIÓN  |9 44685 
700 1 |a Jordan, Ramiro  |9 48977 
856 4 0 |u http://goo.gl/1RJ32j 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0595  |7 3  |8 BD  |9 81222  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0595  |r 2025-03-11 17:04:26  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=891  |w 2025-03-11  |y CP 
999 |c 56042  |d 56042