DER : dynamic evidential reasoning applied to hyperspectral images classification

Detalles Bibliográficos
Autor Principal: Sanz, Cecilia Verónica
Otros autores o Colaboradores: Jordan, Ramiro
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://goo.gl/1RJ32j
Consultar en el Cátalogo
Resumen:This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data- associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (67 KB)