On some categories of involutive centered residuated lattices

Detalles Bibliográficos
Autor Principal: Castiglioni, J. L.
Otros autores o Colaboradores: Menni, Matías, Sagastume, Marta
Formato: Capítulo de libro
Lengua:inglés
Acceso en línea:http://dx.doi.org/10.1007/s11225-008-9145-2
Consultar en el Cátalogo
Resumen:Motivated by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras we define the functor K• relating integral residuated lattices with 0 (IRL0 ) with certain involutive residuated lattices. Our work is also based on the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras, which is an enrichment of the basic adjunction between lattices and Kleene algebras. The lifting of the functor to the category of residuated lattices leads us to study other adjunctions and equivalences. For example, we treat the functor C whose domain is cuRL, the category of involutive residuated lattices M whose unit is fixed by the involution and has a Boolean complement c (the underlying set of CM is the set of elements greater or equal than c). If we restrict to the full subcategory NRL of cuRL of those objects that have a nilpotent c, then C is an equivalence. In fact, CM is isomorphic to Ce M , and Ce is adjoint to ( ), where ( ) assigns to an object A of IRL0 the product A × A0 which is an object of NRL.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (389,9 kB)
DOI:10.1007/s11225-008-9145-2

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183148.0
008 230201s2008 xx o 000 0 eng d
024 8 |a DIF-M6525  |b 6664  |z DIF005945 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Castiglioni, J. L.  |9 48718 
245 1 0 |a On some categories of involutive centered residuated lattices 
300 |a 1 archivo (389,9 kB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Motivated by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras we define the functor K• relating integral residuated lattices with 0 (IRL0 ) with certain involutive residuated lattices. Our work is also based on the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras, which is an enrichment of the basic adjunction between lattices and Kleene algebras. The lifting of the functor to the category of residuated lattices leads us to study other adjunctions and equivalences. For example, we treat the functor C whose domain is cuRL, the category of involutive residuated lattices M whose unit is fixed by the involution and has a Boolean complement c (the underlying set of CM is the set of elements greater or equal than c). If we restrict to the full subcategory NRL of cuRL of those objects that have a nilpotent c, then C is an equivalence. In fact, CM is isomorphic to Ce M , and Ce is adjoint to ( ), where ( ) assigns to an object A of IRL0 the product A × A0 which is an object of NRL. 
534 |a Studia Logica, 2008, Vol.90, (1), pp.93-124 
700 1 |a Menni, Matías  |9 44945 
700 1 |a Sagastume, Marta  |9 44237 
856 4 0 |u http://dx.doi.org/10.1007/s11225-008-9145-2 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0291  |7 3  |8 BD  |9 80895  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0291  |r 2025-03-11 17:04:17  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=552  |w 2025-03-11  |y CP 
999 |c 55727  |d 55727