Compatible operations on commutative residuated lattices

Detalles Bibliográficos
Autor Principal: Castiglioni, J. L.
Otros autores o Colaboradores: Menni, Matías, Sagastume, Marta
Formato: Capítulo de libro
Lengua:inglés
Acceso en línea:http://dx.doi.org/10.3166/jancl.18.413-425
Consultar en el Cátalogo
Resumen:Let L be a commutative residuated lattice and let f : Lk → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of commu- tative residuated lattices is locally affine complete. Then, we find conditions on a not necessarily polynomial function P (x, y) in L that imply that the function x → min{y ∈ L - P (x, y) ≤ y} is compatible when defined. In particular, Pn (x, y) = y n → x, for natural number n, defines a family, Sn , of compatible functions on some commutative residuated lattices. We show through examples that S1 and S2 , defined respectively from P1 and P2 , are independent as operations over this variety; i.e. neither S1 is definable as a polynomial in the language of L enriched with S2 nor S2 in that enriched with S1 .
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (227,2 KB)
DOI:10.3166/jancl.18.413-425