|
|
|
|
LEADER |
00000naa a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250423183002.0 |
008 |
230201s2003 xx r 000 0 eng d |
024 |
8 |
|
|a DIF-M2603
|b 2696
|z DIF002506
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Menni, Matías
|9 44945
|
245 |
1 |
0 |
|a Symmetric monoidal completions and the exponential principle among labeled combinatorial structures
|
490 |
0 |
|
|a ^p Datos electrónicos (1 archivo : 231 KB)
|
500 |
|
|
|a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009)
|
520 |
|
|
|a We generalize Dress and M¨uller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G.
|
534 |
|
|
|a Theory and Applications of Categories, Vol. 11, No. 18, 2003, pp. 397–419.
|
650 |
|
4 |
|a TEORÍA DE CATEGORÍAS
|9 46354
|
650 |
|
4 |
|a MATEMÁTICA DE LA COMPUTACIÓN
|9 42939
|
942 |
|
|
|c CP
|
952 |
|
|
|0 0
|1 0
|4 0
|6 A0102
|7 3
|8 BD
|9 76948
|a DIF
|b DIF
|d 2025-03-11
|l 0
|o A0102
|r 2025-03-11 17:02:46
|u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=106
|w 2025-03-11
|y CP
|
999 |
|
|
|c 52385
|d 52385
|