Symmetric monoidal completions and the exponential principle among labeled combinatorial structures

Detalles Bibliográficos
Autor Principal: Menni, Matías
Formato: Capítulo de libro
Lengua:inglés
Series:^p Datos electrónicos (1 archivo : 231 KB)
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:We generalize Dress and M¨uller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183002.0
008 230201s2003 xx r 000 0 eng d
024 8 |a DIF-M2603  |b 2696  |z DIF002506 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Menni, Matías  |9 44945 
245 1 0 |a Symmetric monoidal completions and the exponential principle among labeled combinatorial structures 
490 0 |a ^p Datos electrónicos (1 archivo : 231 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009) 
520 |a We generalize Dress and M¨uller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G. 
534 |a Theory and Applications of Categories, Vol. 11, No. 18, 2003, pp. 397–419. 
650 4 |a TEORÍA DE CATEGORÍAS  |9 46354 
650 4 |a MATEMÁTICA DE LA COMPUTACIÓN  |9 42939 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0102  |7 3  |8 BD  |9 76948  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0102  |r 2025-03-11 17:02:46  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=106  |w 2025-03-11  |y CP 
999 |c 52385  |d 52385