Scaling up convAtt for sign language recognition

Detalles Bibliográficos
Autor Principal: Ríos, Gastón Gustavo
Otros autores o Colaboradores: Dal Bianco, Pedro Alejandro, Ronchetti, Franco, Quiroga, Facundo Manuel, Ponte Ahón, Santiago Andrés, Stanchi, Oscar, Hasperué, Waldo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/176284
Consultar en el Cátalogo
Resumen:Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (624 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170534.0
008 230201s2024 xx o 000 0 eng d
024 8 |a DIF-M8951  |b 9179  |z DIF008213 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Ríos, Gastón Gustavo 
245 1 0 |a Scaling up convAtt for sign language recognition 
300 |a 1 archivo (624 KB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. 
534 |a Congreso Argentino de Ciencias de la Computación (30mo : 2024 : La Plata, Argentina) 
650 4 |a TECNOLOGÍAS PARA PERSONAS CON DISCAPACIDADES 
653 |a lenguaje de señas 
700 1 |a Dal Bianco, Pedro Alejandro 
700 1 |a Ronchetti, Franco 
700 1 |a Quiroga, Facundo Manuel 
700 1 |a Ponte Ahón, Santiago Andrés 
700 1 |a Stanchi, Oscar 
700 1 |a Hasperué, Waldo 
856 4 0 |u http://sedici.unlp.edu.ar/handle/10915/176284 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A1380  |7 3  |8 BD  |9 84489  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A1380   |r 2025-03-11 17:05:34  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=2915  |w 2025-03-11  |y CP 
999 |c 57982  |d 57982