Scaling up convAtt for sign language recognition

Detalles Bibliográficos
Autor Principal: Ríos, Gastón Gustavo
Otros autores o Colaboradores: Dal Bianco, Pedro Alejandro, Ronchetti, Franco, Quiroga, Facundo Manuel, Ponte Ahón, Santiago Andrés, Stanchi, Oscar, Hasperué, Waldo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/176284
Consultar en el Cátalogo
Resumen:Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (624 KB)