Quality web information retrieval : towards Improving semantic recommender systems with friendsourcing

Detalles Bibliográficos
Autor Principal: Díaz, Alicia Viviana
Otros autores o Colaboradores: Motz, Regina, Fernández, Alejandro, Lima, José Valdeni de, López, Diego
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://goo.gl/uSk51J
Consultar en el Cátalogo
Resumen:Web content quality is crucial in any domains, but it is even more critical in the health and e-learning ones. Users need to retrieve information that is precise, believable, and relevant to their problem. With the exponential growth of web contents, Recommender System has become indispensable for discovering quality information that might interest or be needed by web users. Quality-based Recommender Systems take into account quality criteria like credibility, believability, readability. In this paper, we present an approach to conceive Social Semantic Recommender Systems. In this approach a friendsourcing strategy is applied to better adequate recommendations to the user needs. The friendsourcing strategy focuses on the use of social force to assess quality of web content. In this paper we introduce the main research issues of this approach and detail the road-map we are following in the QHIR Project.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (52,8 kB)