Cocomplete toposes whose exact completions are toposes
Autor Principal: | |
---|---|
Formato: | Capítulo de libro |
Lengua: | inglés |
Series: | ^p Datos electrónicos (1 archivo : 283 KB)
|
Temas: | |
Acceso en línea: | www.lifia.info.unlp.edu.ar/papers/2007/Menni2007.pdf Consultar en el Cátalogo |
Resumen: | Let E be a cocomplete topos. We show that if the exact completion of E is a topos then every indecomposable object in E is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere–Schanuel characterization of Boolean presheaf toposes and Hofstra’s characterization of the locally connected Grothendieck toposes whose exact completion is a Grothendieck topos. We also show that for any topological space X, the exact completion of Sh(X) is a topos if and only if X is discrete. The corollary in this case characterizes the Grothendieck toposes with enough points whose exact completions are toposes. Copyright 2006 Elsevier B.V. |
Notas: | Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009) |