Symmetric monoidal completions and the exponential principle among labeled combinatorial structures

Detalles Bibliográficos
Autor Principal: Menni, Matías
Formato: Capítulo de libro
Lengua:inglés
Series:^p Datos electrónicos (1 archivo : 231 KB)
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:We generalize Dress and M¨uller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009)