Detalles Bibliográficos
Autor Principal: |
Menni, Matías |
Formato: | Capítulo de libro
|
Lengua: | inglés |
Series: | ^p Datos electrónicos (1 archivo : 231 KB)
|
Temas: | |
Acceso en línea: | Consultar en el Cátalogo
|
Resumen: | We generalize Dress and M¨uller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !G of presheaves on the symmetric monoidal completion !G of G satisfies the exponential principle. The main result in [5] reduces to the case G = 1. We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. Finally, we give a characterization of G as a subcategory of !G.
|
Notas: | Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 06/03/2009) |