Resumen: | En esta tesis analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y matemáticos. Dividiremos este trabajo en tres partes: en la primera de ellas examinaremos algunos aspectos generales del trasfondo científico y filosófico del siglo XVII. Luego, nos detendremos en algunas importantes concepciones históricas que, de una u otra manera, influyeron en la evolución del pensamiento de Leibniz, como por ejemplo, entre otras, las de Aristóteles, Froidmont, Galileo y Gassendi. En la segunda parte abordaremos el tratamiento de Leibniz sobre el continuo y el infinito entre 1669 y 1672. Veremos que en este período, en el que hubo una gran evolución interna, Leibniz planteó algunas nociones muy importantes, como por ejemplo las de lo indivisible y lo infinitamente pequeño. En la tercera parte nos centraremos en algunos escritos redactados por Leibniz entre 1675 y 1676, en los que propuso algunas ideas novedosas tanto en el dominio de la matemática, de la física y de la metafísica. Algunas de ellas son, por ejemplo, la distinción entre infinito con término y sin término, las nociones de forma simple, agregado, todo y uno
|