|
|
|
|
LEADER |
00000naa a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250423183229.0 |
008 |
230201s2018 xx o 000 0 eng d |
024 |
8 |
|
|a DIF-M7791
|b 8007
|z DIF007119
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Rodríguez, J. M.
|9 49699
|
245 |
1 |
0 |
|a Evaluation of open information extraction methods using Reuters-21578 database
|
300 |
|
|
|a 1 archivo (375,3 kB)
|
500 |
|
|
|a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
|
520 |
|
|
|a The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.
|
534 |
|
|
|a International Conference on Machine Learning and Soft Computing (2da : 2018 : Phu Quoc, Vietnam)
|
700 |
1 |
|
|a Merlino, Hernán
|9 49700
|
700 |
1 |
|
|a Pesado, Patricia Mabel
|9 44891
|
700 |
1 |
|
|a García-Martínez, Ramón
|9 45640
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1145/3184066.3184099
|
942 |
|
|
|c CP
|
952 |
|
|
|0 0
|1 0
|4 0
|6 A0943
|7 3
|8 BD
|9 82367
|a DIF
|b DIF
|d 2025-03-11
|l 0
|o A0943
|r 2025-03-11 17:04:53
|u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1688
|w 2025-03-11
|y CP
|
999 |
|
|
|c 56894
|d 56894
|