Evaluation of open information extraction methods using Reuters-21578 database

Detalles Bibliográficos
Autor Principal: Rodríguez, J. M.
Otros autores o Colaboradores: Merlino, Hernán, Pesado, Patricia Mabel, García-Martínez, Ramón
Formato: Capítulo de libro
Lengua:inglés
Acceso en línea:http://dx.doi.org/10.1145/3184066.3184099
Consultar en el Cátalogo
Resumen:The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (375,3 kB)
DOI:10.1145/3184066.3184099

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183229.0
008 230201s2018 xx o 000 0 eng d
024 8 |a DIF-M7791  |b 8007  |z DIF007119 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Rodríguez, J. M.  |9 49699 
245 1 0 |a Evaluation of open information extraction methods using Reuters-21578 database 
300 |a 1 archivo (375,3 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure. 
534 |a International Conference on Machine Learning and Soft Computing (2da : 2018 : Phu Quoc, Vietnam) 
700 1 |a Merlino, Hernán  |9 49700 
700 1 |a Pesado, Patricia Mabel  |9 44891 
700 1 |a García-Martínez, Ramón  |9 45640 
856 4 0 |u http://dx.doi.org/10.1145/3184066.3184099 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0943  |7 3  |8 BD  |9 82367  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0943   |r 2025-03-11 17:04:53  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1688  |w 2025-03-11  |y CP 
999 |c 56894  |d 56894