Handshape recognition for Argentinian Sign Language using ProbSom

Detalles Bibliográficos
Autor Principal: Ronchetti, Franco
Otros autores o Colaboradores: Quiroga, Facundo Manuel, Estrebou, César Armando, Lanzarini, Laura Cristina
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:Automatic sign language recognition is an important topic within the areas of human-computer interaction and machine learning. On the one hand, it poses a complex challenge that requires the intervention of various knowledge areas, such as video processing, image processing, intelligent systems and linguistics. On the other hand, robust recognition of sign language could assist in the translation process and the integration of hearingimpaired people. This paper offers two main contributions: first, the creation of a database of handshapes for the Argentinian Sign Language (LSA), which is a topic that has barely been discussed so far. Secondly, a technique for image processing, descriptor extraction and subsequent handshape classification using a supervised adaptation of self-organizing maps that is called ProbSom. This technique is compared to others in the state of the art, such as Support Vector Machines (SVM), Random Forests, and Neural Networks. The database that was built contains 800 images with 16 LSA conjurations, and is a first step towards building a comprehensive database of Argentinian signs. The ProbSom-based neural classifier, using the proposed descriptor, achieved an accuracy rate above 90%.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (474,1 kB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183227.0
008 230201s2016 xx r 000 0 eng d
024 8 |a DIF-M7719  |b 7938  |z DIF007053 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Ronchetti, Franco  |9 47017 
245 1 0 |a Handshape recognition for Argentinian Sign Language using ProbSom 
300 |a 1 archivo (474,1 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Automatic sign language recognition is an important topic within the areas of human-computer interaction and machine learning. On the one hand, it poses a complex challenge that requires the intervention of various knowledge areas, such as video processing, image processing, intelligent systems and linguistics. On the other hand, robust recognition of sign language could assist in the translation process and the integration of hearingimpaired people. This paper offers two main contributions: first, the creation of a database of handshapes for the Argentinian Sign Language (LSA), which is a topic that has barely been discussed so far. Secondly, a technique for image processing, descriptor extraction and subsequent handshape classification using a supervised adaptation of self-organizing maps that is called ProbSom. This technique is compared to others in the state of the art, such as Support Vector Machines (SVM), Random Forests, and Neural Networks. The database that was built contains 800 images with 16 LSA conjurations, and is a first step towards building a comprehensive database of Argentinian signs. The ProbSom-based neural classifier, using the proposed descriptor, achieved an accuracy rate above 90%. 
534 |a Journal of Computer Science & Technology, 16(1), pp. 1-5. 
650 4 |a RESPONSABILIDAD SOCIAL  |9 11919 
650 4 |a PROCESAMIENTO DE IMÁGENES  |9 43134 
653 |a ProbSom 
653 |a Lenguaje de Señas Argentino 
700 1 |a Quiroga, Facundo Manuel  |9 48512 
700 1 |a Estrebou, César Armando  |9 46276 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0889  |7 3  |8 BD  |9 82290  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0889   |r 2025-03-11 17:04:51  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1623  |w 2025-03-11  |y CP 
999 |c 56829  |d 56829