Continuous cohesion over sets

Detalles Bibliográficos
Autor Principal: Menni, Matías
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://hdl.handle.net/11336/46008
Consultar en el Cátalogo
Resumen:A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (421,2 kB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183219.0
008 230201s2014 xx o 000 0 eng d
024 8 |a DIF-M7555  |b 7775  |z DIF006838 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Menni, Matías  |9 44945 
245 1 0 |a Continuous cohesion over sets 
300 |a 1 archivo (421,2 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples. 
534 |a Theory And Applications Of Categories, 29(20), pp. 542-568. 
650 4 |a MATEMÁTICAS  |9 19646 
653 |a cohesión axiomática 
856 4 0 |u http://hdl.handle.net/11336/46008 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0783  |7 3  |8 BD  |9 81992  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0783  |r 2025-03-11 17:04:44  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1477  |w 2025-03-11  |y CP 
999 |c 56614  |d 56614