Keyword extracting using auto-associative neural networks

Detalles Bibliográficos
Autor Principal: Aquino, Germán
Otros autores o Colaboradores: Hasperué, Waldo, Lanzarini, Laura Cristina
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as autoencoders, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (436,3 kB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183219.0
008 230201s2014 xx r 000 0 eng d
024 8 |a DIF-M7558  |b 7778  |z DIF006834 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Aquino, Germán  |9 49012 
245 1 0 |a Keyword extracting using auto-associative neural networks 
300 |a 1 archivo (436,3 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present a new algorithm for keyword extraction. Its main goal is to extract keywords from text documents written in Spanish quickly and without requiring a large training set. This goal was achieved using auto-associative neural networks, also known as autoencoders, trained using only the terms designated as keywords in the training set, so that these networks can learn the features characterizing the important terms in a document. 
534 |a Congreso Argentino de Ciencias de la Computación (20mo : 2014 : Buenos Aires, Argentina) 
650 4 |a REDES NEURONALES  |9 42953 
653 |a minería de textos 
700 1 |a Hasperué, Waldo  |9 45531 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0786  |7 3  |8 BD  |9 81987  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0786  |r 2025-03-11 17:04:44  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1480  |w 2025-03-11  |y CP 
999 |c 56610  |d 56610