Keyword identification in spanish documents using neural networks

Detalles Bibliográficos
Autor Principal: Aquino, Germán
Otros autores o Colaboradores: Lanzarini, Laura Cristina
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:Consultar en el Cátalogo
Resumen:The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (575,1 kB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183219.0
008 230201s2015 xx r 000 0 eng d
024 8 |a DIF-M7559  |b 7779  |z DIF006833 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Aquino, Germán  |9 49012 
245 1 0 |a Keyword identification in spanish documents using neural networks 
300 |a 1 archivo (575,1 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a The large amount of textual information digitally available today gives rise to the need for effective means of indexing, searching and retrieving this information. Keywords are used to describe briefly and precisely the contents of a textual document. In this paper we present an algorithm for keyword extraction from documents written in Spanish.This algorithm combines autoencoders, which are adequate for highly unbalanced classification problems, with the discriminative power of conventional binary classifiers. In order to improve its performance on larger and more diverse datasets, our algorithm trains several models of each kind through bagging. 
534 |a Congreso Argentino de Ciencias de la Computación (21ro : 2015 : Junín, Argentina) 
650 4 |a REDES NEURONALES  |9 42953 
653 |a extracción de palabras clave 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0787  |7 3  |8 BD  |9 81986  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0787  |r 2025-03-11 17:04:44  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1481  |w 2025-03-11  |y CP 
999 |c 56609  |d 56609