Particle swarm optimization with oscillation control

Detalles Bibliográficos
Autor Principal: López, Javier
Otros autores o Colaboradores: Lanzarini, Laura Cristina, De Giusti, Armando Eduardo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1145/1569901.1570141
Consultar en el Cátalogo
Resumen:Particle Swarm Optimization (PSO) is a metaheuristic that has been successfully applied to linear and non-linear optimization problems in functions with discrete and continuous domains. This paper presents a new variation of this algorithm - called oscPSO - that improves the inherent search capacity of the original (canonical) version of the PSO algorithm. This version uses a deterministic local search method whose use depends on the movement patterns of the particles in each dimension of the problem. The method proposed was assessed by means of a set of complex test functions, and the performance of this version was compared with that of the original version of the PSO algorithm. In all cases, the oscPSO variation equaled or surpassed the performance of the canonical version of the algorithm.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (438,3 kB)
DOI:10.1145/1569901.1570141

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183150.0
008 230201s2009 xx o 000 0 eng d
024 8 |a DIF-M6599  |b 6738  |z DIF006017 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a López, Javier  |9 48528 
245 1 0 |a Particle swarm optimization with oscillation control 
300 |a 1 archivo (438,3 kB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Particle Swarm Optimization (PSO) is a metaheuristic that has been successfully applied to linear and non-linear optimization problems in functions with discrete and continuous domains. This paper presents a new variation of this algorithm - called oscPSO - that improves the inherent search capacity of the original (canonical) version of the PSO algorithm. This version uses a deterministic local search method whose use depends on the movement patterns of the particles in each dimension of the problem. The method proposed was assessed by means of a set of complex test functions, and the performance of this version was compared with that of the original version of the PSO algorithm. In all cases, the oscPSO variation equaled or surpassed the performance of the canonical version of the algorithm. 
534 |a Annual conference on genetic and evolutionary computation GECCO 09 (11º : 2009 : Montreal, Canadá) Proccedings ACM, Nueva York, 2009, pp.1751-1752. 
650 4 |a COMPUTACIÓN EVOLUTIVA  |9 44783 
650 4 |a OPTIMIZACIÓN  |9 44744 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
700 1 |a De Giusti, Armando Eduardo  |9 43366 
856 4 0 |u http://dx.doi.org/10.1145/1569901.1570141 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0356  |7 3  |8 BD  |9 80973  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0356  |r 2025-03-11 17:04:19  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=626  |w 2025-03-11  |y CP 
999 |c 55799  |d 55799