A new binary PSO with velocity control

Detalles Bibliográficos
Autor Principal: Lanzarini, Laura Cristina
Otros autores o Colaboradores: López, Javier, Maulini, Juan Andrés, De Giusti, Armando Eduardo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http:/dx.doi.org/10.1007/978-3-642-21515-5_14
Consultar en el Cátalogo
Resumen:Particle Swarm Optimization (PSO) is a metaheuristic that is highly used to solve mono- and multi-objective optimization problems. Two well-differentiated PSO versions have been defined - one that operates in a continuous solution space and one for binary spaces. In this paper, a new version of the Binary PSO algorithm is presented. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The method proposed has been compared with two alternative methods to solve four known test functions. The results obtained have been satisfactory.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (167 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183149.0
008 230201s2011 xx o 000 0 eng d
024 8 |a DIF-M6591  |b 6730  |z DIF005982 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Lanzarini, Laura Cristina  |9 43377 
245 1 0 |a A new binary PSO with velocity control 
300 |a 1 archivo (167 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Particle Swarm Optimization (PSO) is a metaheuristic that is highly used to solve mono- and multi-objective optimization problems. Two well-differentiated PSO versions have been defined - one that operates in a continuous solution space and one for binary spaces. In this paper, a new version of the Binary PSO algorithm is presented. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The method proposed has been compared with two alternative methods to solve four known test functions. The results obtained have been satisfactory. 
534 |a Advances in Swarm Intelligence : Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011, Proceedings, Part I. Berlín : Springer, 2011. (Lecture Notes in Computer Science ; 6728), pp. 111-119 
650 4 |a MÉTODOS HEURÍSTICOS  |9 43249 
650 4 |a OPTIMIZACIÓN  |9 44744 
700 1 |a López, Javier  |9 48528 
700 1 |a Maulini, Juan Andrés  |9 48422 
700 1 |a De Giusti, Armando Eduardo  |9 43366 
856 4 0 |u http:/dx.doi.org/10.1007/978-3-642-21515-5_14 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0349  |7 3  |8 BD  |9 80935  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0349  |r 2025-03-11 17:04:18  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=617  |w 2025-03-11  |y CP 
999 |c 55764  |d 55764