Image recovery using a new nonlinear adaptive filter based on neural networks

Detalles Bibliográficos
Autor Principal: Corbalán, Leonardo César
Otros autores o Colaboradores: Russo, Claudia Cecilia, Lanzarini, Laura Cristina, De Giusti, Armando Eduardo, Massa, G. O.
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1109/ITI.2006.1708506
Consultar en el Cátalogo
Resumen:This work defines a new nonlinear adaptive filter based on a feed-forward neural network with the capacity of significantly reducing the additive noise of an image. Even though measurements have been carried out using X-ray images with additive white Gaussian noise, it is possible to extend the results to other type of images. Comparisons have been carried out with the Weiner filter because it is the most effective option for reducing Gaussian noise. In most of the cases, image reconstruction using the proposed method has produced satisfactory results. Finally, some conclusions and future work lines are presented
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 18/06/2014)
Descripción Física:1 archivo (1,4 MB)
DOI:10.1109/ITI.2006.1708506

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183147.0
008 230201s2006 xxu o 000 0 eng d
024 8 |a DIF-M6494  |b 6633  |z DIF005923 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Corbalán, Leonardo César  |9 44782 
245 1 0 |a Image recovery using a new nonlinear adaptive filter based on neural networks 
300 |a 1 archivo (1,4 MB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 18/06/2014) 
520 |a This work defines a new nonlinear adaptive filter based on a feed-forward neural network with the capacity of significantly reducing the additive noise of an image. Even though measurements have been carried out using X-ray images with additive white Gaussian noise, it is possible to extend the results to other type of images. Comparisons have been carried out with the Weiner filter because it is the most effective option for reducing Gaussian noise. In most of the cases, image reconstruction using the proposed method has produced satisfactory results. Finally, some conclusions and future work lines are presented 
534 |a International Conference on Information Technology Interfaces (28th : 2006 : Cavtat, Croacia),IEEE pp.355-360. 
650 4 |a REDES NEURONALES  |9 42953 
700 1 |a Russo, Claudia Cecilia  |9 43372 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
700 1 |a De Giusti, Armando Eduardo  |9 43366 
700 1 |a Massa, G. O.  |9 48819 
856 4 0 |u http://dx.doi.org/10.1109/ITI.2006.1708506 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0265  |7 3  |8 BD  |9 80873  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0265  |r 2025-03-11 17:04:17  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=523  |w 2025-03-11  |y CP 
999 |c 55705  |d 55705