Parallelization analysis on clusters of multicore nodes using shared distributed memory parallel computing models

Detalles Bibliográficos
Autor Principal: Tinetti, Fernando Gustavo
Otros autores o Colaboradores: Wolfmann, Aaron Gustavo Horacio
Formato: Capítulo de libro
Lengua:español
Temas:
Acceso en línea:www.computer.org/portal/web/csdl/doi/10.1109/CSIE.2009.185
Consultar en el Cátalogo
Resumen:This paper presents alternatives performance results obtained by analyzing parallelization on a cluster of multicore nodes. The ultimate goal is to if both shared distributed memory parallel processing models need to be taken into account independently, if one affects the other both must be considered simultaneosly. The application used as a testbed is classical in the context of highperformance computing: matrix multiplication. Results are shown in terms of the conditions under which performance is optimized to focus the parallelization efforts on clusters with nodes with multiple cores, based on experiments combining both kinds of parallel models. In any case, processing units should be effectively used in order to optimize the performance of parallel applications.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 03/05/2011)
Descripción Física:Datos electrónicos (1 archivo: 298 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183022.0
008 230201s2009 ag o 000 0 spa d
024 8 |a DIF-M3119  |b 3224  |z DIF003030 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Tinetti, Fernando Gustavo  |9 44771 
245 1 0 |a Parallelization analysis on clusters of multicore nodes using shared distributed memory parallel computing models 
300 |a Datos electrónicos (1 archivo: 298 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 03/05/2011) 
520 |a This paper presents alternatives performance results obtained by analyzing parallelization on a cluster of multicore nodes. The ultimate goal is to if both shared distributed memory parallel processing models need to be taken into account independently, if one affects the other both must be considered simultaneosly. The application used as a testbed is classical in the context of highperformance computing: matrix multiplication. Results are shown in terms of the conditions under which performance is optimized to focus the parallelization efforts on clusters with nodes with multiple cores, based on experiments combining both kinds of parallel models. In any case, processing units should be effectively used in order to optimize the performance of parallel applications. 
534 |a 2009 World Congress on Computer Science Information Engineering ISBN 978-0-7695-3507-4. Pág. 466 - 470. 2009 
650 4 |a CLUSTERS  |9 44129 
700 1 |a Wolfmann, Aaron Gustavo Horacio  |9 46995 
856 4 0 |u www.computer.org/portal/web/csdl/doi/10.1109/CSIE.2009.185 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0232  |7 3  |9 77715  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0232  |r 2025-03-11 17:03:03  |w 2025-03-11  |y CP 
999 |c 52884  |d 52884