|
|
|
|
LEADER |
00000naa a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250423183022.0 |
008 |
230201s2007 xx o 000 0 eng d |
024 |
8 |
|
|a DIF-M3112
|b 3219
|z DIF003024
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Hasperué, Waldo
|9 45531
|
245 |
1 |
0 |
|a Classification rules obtained from evidence accumulation
|
300 |
|
|
|a 1 archivo (179 KB)
|
500 |
|
|
|a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.)
|
520 |
|
|
|a This paper presents a machine learning approach applicable to Data Mining based on obtaining classification rules. It proposes a strategy to obtain classification rules clusters resulting a co-association matrix. Such matrix is obtained the combination of different clustering methods applied to input data, it has been selected by its result's robustness. The proposed method has been applied to two set of data obtained the UCI repository with really successful results. The results obtained in the classification have been compared to other existing methods showing the new proposed method superiority.
|
534 |
|
|
|a International Conference on Information Technology Interfaces (29ª : 2007 jun. 25-28 : Cavtat), pp. 167-172
|
650 |
|
4 |
|a ESTRUCTURAS DE DATOS
|9 42857
|
650 |
|
4 |
|a CLUSTERING
|9 44949
|
700 |
1 |
|
|a Lanzarini, Laura Cristina
|9 43377
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/ITI.2007.4283764
|
942 |
|
|
|c CP
|
952 |
|
|
|0 0
|1 0
|4 0
|6 A0227
|7 3
|8 BD
|9 77710
|a DIF
|b DIF
|d 2025-03-11
|l 0
|o A0227
|r 2025-03-11 17:03:02
|u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=601
|w 2025-03-11
|y CP
|
999 |
|
|
|c 52879
|d 52879
|