Classification rules obtained from evidence accumulation

Detalles Bibliográficos
Autor Principal: Hasperué, Waldo
Otros autores o Colaboradores: Lanzarini, Laura Cristina
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1109/ITI.2007.4283764
Consultar en el Cátalogo
Resumen:This paper presents a machine learning approach applicable to Data Mining based on obtaining classification rules. It proposes a strategy to obtain classification rules clusters resulting a co-association matrix. Such matrix is obtained the combination of different clustering methods applied to input data, it has been selected by its result's robustness. The proposed method has been applied to two set of data obtained the UCI repository with really successful results. The results obtained in the classification have been compared to other existing methods showing the new proposed method superiority.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.)
Descripción Física:1 archivo (179 KB)
DOI:10.1109/ITI.2007.4283764

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250423183022.0
008 230201s2007 xx o 000 0 eng d
024 8 |a DIF-M3112  |b 3219  |z DIF003024 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Hasperué, Waldo  |9 45531 
245 1 0 |a Classification rules obtained from evidence accumulation 
300 |a 1 archivo (179 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) 
520 |a This paper presents a machine learning approach applicable to Data Mining based on obtaining classification rules. It proposes a strategy to obtain classification rules clusters resulting a co-association matrix. Such matrix is obtained the combination of different clustering methods applied to input data, it has been selected by its result's robustness. The proposed method has been applied to two set of data obtained the UCI repository with really successful results. The results obtained in the classification have been compared to other existing methods showing the new proposed method superiority. 
534 |a International Conference on Information Technology Interfaces (29ª : 2007 jun. 25-28 : Cavtat), pp. 167-172 
650 4 |a ESTRUCTURAS DE DATOS  |9 42857 
650 4 |a CLUSTERING  |9 44949 
700 1 |a Lanzarini, Laura Cristina  |9 43377 
856 4 0 |u http://dx.doi.org/10.1109/ITI.2007.4283764 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0227  |7 3  |8 BD  |9 77710  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0227  |r 2025-03-11 17:03:02  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=601  |w 2025-03-11  |y CP 
999 |c 52879  |d 52879