|
|
|
|
LEADER |
00000naa a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250423183000.0 |
008 |
230201s2005 xx o 000 0 eng d |
024 |
8 |
|
|a DIF-M2560
|b 2650
|z DIF002462
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Fiore, Marcelo
|9 46353
|
245 |
1 |
0 |
|a Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads
|
490 |
0 |
|
|a ^p Datos electrónicos (1 archivo : 243 KB)
|
500 |
|
|
|a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 19/12/2008)
|
520 |
|
|
|a It is well known that for any monad, the associated Kleisli category is embedded in the category of Eilenberg-Moore algebras as the free ones. We discovered some interesting examples in which this embedding is reflective; that is, it has a left adjoint. To understand this phenomenon we introduce and study a class of monads arising from factorization systems, and thereby termed factorization monads. For them we show that under some simple conditions on the factorization system the free algebras are a full reflective subcategory of the algebras. We provide various examples of this situation of a combinatorial nature. -- Keywords: Combinatorial structures; Factorization systems; Joyal species; Kleisli categories; Monads; Power series; Schanuel topos.
|
534 |
|
|
|a (2005) Theory and Applications of Categories, 15 (2), pp 40-65.
|
650 |
|
4 |
|a TEORÍA DE CATEGORÍAS
|9 46354
|
650 |
|
4 |
|a MATEMÁTICA DE LA COMPUTACIÓN
|9 42939
|
700 |
1 |
|
|a Menni, Matías
|9 44945
|
856 |
4 |
0 |
|u tac.mta.ca/tac/volumes/15/2/15-02abs.html
|
942 |
|
|
|c CP
|
952 |
|
|
|0 0
|1 0
|4 0
|6 A0073
|7 3
|8 BD
|9 76901
|a DIF
|b DIF
|d 2025-03-11
|l 0
|o A0073
|r 2025-03-11 17:02:45
|u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=77
|w 2025-03-11
|y CP
|
999 |
|
|
|c 52347
|d 52347
|