Automatic text summarization

Detalles Bibliográficos
Autor Principal: Torres-Moreno, Juan-Manuel
Formato: Libro
Lengua:inglés
Datos de publicación: Londres : ISTE, 2014
Edición:1st ed.
Temas:
Acceso en línea:Consultar en el Cátalogo
Notas:Incluye índice y bibliografía.
Descripción Física:xxiii, 348 p. : il.
ISBN:9781848216686
Tabla de Contenidos:
  • Introduction
  • Part 1. Foundations
  • 1. Why Summarize Texts?
  • 1.1. The Need For Automatic Summarization
  • 1.2. Definitions Of Text Summarization
  • 1.3. Categorizing Automatic Summaries
  • 1.4. Applications Of Automatic Text Summarization
  • 1.5. About Automatic Text Summarization
  • 1.6. Conclusion
  • 2. Automatic Text Summarization: Some Important Concepts
  • 2.1. Processes Before The Process
  • 2.1.1. Sentence-Term Matrix: The Vector Space Model (VSM) Model
  • 2.2. Extraction, Abstraction Or Compression?
  • 2.3. Extraction-Based Summarization
  • 2.3.1. Surface-Level Algorithms
  • 2.3.2. Intermediate-Level Algorithms
  • 2.3.3. Deep Parsing Algorithms
  • 2.4. Abstract Summarization
  • 2.4.1. FRUMP
  • 2.4.2. Information Extraction And Abstract Generation
  • 2.5. Sentence Compression And Fusion
  • 2.5.1. Sentence Compression
  • 2.5.2. Multisentence Fusion
  • 2.6. The Limits Of Extraction
  • 2.6.1. Cohesion And Coherence
  • 2.6.2. The HexTAC Experiment
  • 2.7. The Evolution Of Text Summarization Tasks
  • 2.7.1. Traditional Tasks
  • 2.7.2. Current And Future Problems
  • 2.8. Evaluating Summaries
  • 2.9. Conclusion
  • 3. Single-Document Summarization
  • 3.1. Historical Approaches
  • 3.1.1. Luhn’s Automatic Creation Of Literature Abstracts
  • 3.1.2. The Luhn Algorithm
  • 3.1.3. Edmundson’s Linear Combination
  • 3.1.4. Extracts By Elimination
  • 3.2. Machine Learning Approaches
  • 3.2.1. Machine Learning Parameters
  • 3.3. State-Of-The-Art Approaches
  • 3.4. Latent Semantic Analysis
  • 3.4.1. Singular Value Decomposition (SVD)
  • 3.4.2. Sentence Weighting By SVD
  • 3.5. Graph-Based Approaches
  • 3.5.1. PAGERANK And SNA Algorithms
  • 3.5.2. Graphs And Automatic Text Summarization
  • 3.5.3. Constructing The Graph
  • 3.5.4. Sentence Weighting
  • 3.6. DIVTEX: A Summarizer Based On The Divergence Of Probability Distribution
  • 3.7. CORTEX
  • 3.7.1. Frequential Measures
  • 3.7.2. Hamming Measures
  • 3.7.3. Mixed Measures
  • 3.7.4. Decision Algorithm
  • 3.8. ARTEX
  • 3.9. ENERTEX
  • 3.9.1. Spins And Neural Networks
  • 3.9.2. The Textual Energy Similarity Measure
  • 3.9.3. Summarization By Extraction And Textual Energy
  • 3.10. Approaches Using Rhetorical Analysis
  • 3.11. Lexical Chains
  • 3.12. Conclusion
  • 4. Guided Multi-Document Summarization
  • 4.1. Introduction
  • 4.2. The Problems Of Multidocument Summarization
  • 4.3. DUC/TAC & INEX Tweet Contextualization
  • 4.4. The Taxonomy Of MDS Methods
  • 4.4.1. Structure Based
  • 4.4.2. Vector Space Model Based
  • 4.4.3. Graph Based
  • 4.5. Some Multi-Document Summarization Systems And Algorithms
  • 4.5.1. SUMMONS
  • 4.5.2. Maximal Marginal Relevance
  • 4.5.3. A Multidocument Biography Summarization System
  • 4.5.4. Multi-Document ENERTEX
  • 4.5.5. MEAD
  • 4.5.6. CATS
  • 4.5.7. SUMUM And SUMMA
  • 4.5.8. NEO-CORTEX
  • 4.6. Update Summarization
  • 4.6.1. Update Summarization Pilot Task At DUC 2007
  • 4.6.2. Update Summarization Task At TAC 2008 And 2009
  • 4.6.3. A Minimization-Maximization Approach
  • 4.6.4. The ICSI System At TAC 2008 And 2009
  • 4.6.5. The CBSEAS System At TAC
  • 4.7. Multidocument Summarization By Polytopes
  • 4.8. Redundancy
  • 4.9. Conclusion
  • Part 2. Emerging Systems
  • 5. Multi And Cross-Lingual Summarization
  • 5.1. Multilingualism, The Web And Automatic Summarization
  • 5.2. Automatic Multilingual Summarization
  • 5.3. MEAD
  • 5.4. SUMMARIST
  • 5.5. COLUMBIA NEWSBLASTER
  • 5.6. NEWSEXPLORER
  • 5.7. GOOGLE NEWS
  • 5.8. CAPS
  • 5.9. Automatic Cross-Lingual Summarization
  • 5.9.1. The Quality Of Machine Translation
  • 5.9.2. A Graph-Based Cross-Lingual Summarizer
  • 5.10. Conclusion
  • 6. Source And Domain-Specific Summarization
  • 6.1. Genre, Specialized Documents And Automatic Summarization
  • 6.2. Automatic Summarization And Organic Chemistry
  • 6.2.1. YACHS2
  • 6.3. Automatic Summarization And Biomedicine
  • 6.3.1. SUMMTERM
  • 6.3.2. A Linguistic-Statistical Approach
  • 6.4. Summarizing Court Decisions
  • 6.5. Opinion Summarization
  • 6.5.1. CBSEAS At TAC 2008 Opinion Task
  • 6.6.Web Summarization
  • 6.6.1. Web Page Summarization
  • 6.6.2. OCELOT And The Statistical Gist
  • 6.6.3. Multitweet Summarization
  • 6.6.4. Email Summarization
  • 6.7. Conclusion
  • 7. Text Abstracting
  • 7.1. Abstraction-Based Automatic Summarization
  • 7.2. Systems Using Natural Language Generation
  • 7.3. An Abstract Generator Using Information Extraction
  • 7.4. Guided Summarization And A Fully Abstractive Approach
  • 7.5. Abstraction-Based Summarization Via Conceptual Graphs
  • 7.6. Multisentence Fusion
  • 7.6.1. Multisentence Fusion Via Graphs
  • 7.6.2. Graphs And Keyphrase Extraction: The Takahé System
  • 7.7. Sentence Compression
  • 7.7.1. Symbolic Approaches
  • 7.7.2. Statistical Approaches
  • 7.7.3. A Statistical-Linguistic Approach
  • 7.8. Conclusion
  • 8. Evaluating Document Summaries
  • 8.1. How Can Summaries Be Evaluated?
  • 8.2. Extrinsic Evaluations
  • 8.3. Intrinsic Evaluations
  • 8.3.1. The Baseline Summary
  • 8.4. TIPSTER SUMMAC Evaluation Campaigns
  • 8.4.1. Ad Hoc Task
  • 8.4.2. Categorization Task
  • 8.4.3. Question-Answering Task
  • 8.5. NTCIR Evaluation Campaigns
  • 8.6. DUC/TAC Evaluation Campaigns
  • 8.6.1. Manual Evaluations
  • 8.7. CLEF-INEX Evaluation Campaigns
  • 8.8. Semi-Automatic Methods For Evaluating Summaries
  • 8.8.1. Level Of Granularity: The Sentence
  • 8.8.2. Level Of Granularity: Words
  • 8.9. Automatic Evaluation Via Information Theory
  • 8.9.1. Divergence Of Probability Distribution
  • 8.9.2. FRESA
  • 8.10. Conclusion
  • Conclusion
  • Appendix 1. Information Retrieval, NLP And ATS
  • Appendix 2. Automatic Text Summarization Resources
  • Bibliography
  • Index