TY - GEN T1 - Scaling up convAtt for sign language recognition A1 - Ríos, Gastón Gustavo A2 - Dal Bianco, Pedro Alejandro A2 - Ronchetti, Franco A2 - Quiroga, Facundo Manuel A2 - Ponte Ahón, Santiago Andrés A2 - Stanchi, Oscar A2 - Hasperué, Waldo LA - English UL - http://vufind10-pruebas.sigbunlp.bibliotecas.unlp.edu.ar/Record/dif.57982 AB - Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. NO - Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) KW - TECNOLOGÍAS PARA PERSONAS CON DISCAPACIDADES KW - lenguaje de señas ER -