Modelling large-scale scientific data transfers
Autor Principal: | |
---|---|
Otros autores o Colaboradores: | , , |
Formato: | Tesis |
Lengua: | inglés |
Datos de publicación: |
2021
|
Temas: | |
Acceso en línea: | http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=2423 Consultar en el Cátalogo |
Descripción Física: | 1 archivo (3,4 MB) : il. col. |
Tabla de Contenidos:
- 1 Introduction
- 1.1 Motivation
- 1.2 Research questions
- 1.3 Research outline
- 2 The distributed data management environment
- 2.1 The World LHC Computing Grid
- 2.2 The File Transfer Service
- 2.3 Rucio
- 2.3.1 Rucio Data IDentiers
- 2.3.2 Rucio Storage Elements
- 2.3.3 Replication rules and subscriptions
- 2.3.4 Replica management and transfers
- 3 Data selection and model metrics
- 3.1 Rucio data extraction and selection
- 3.1.1 Transfers and Deletions
- 3.1.2 FTS Server
- 3.1.3 TAPE activities
- 3.1.4 Failed transfers
- 3.1.5 Data extraction and treatment
- 3.2 Metric election
- 3.2.1 MSE and RMSE
- 3.2.2 MEA and MedAE
- 3.2.3 MSLE and RMSLE
- 3.2.4 Explained Variance and R2 Score
- 3.2.5 Mean Tweedie Deviance
- 3.2.6 MAPE and RE
- 3.2.7 FoGP
- 3.2.8 Metrics comparison experiment
- 4 Model of intra-rule Rule TTC extrapolation
- 4.1 Transfers per rule distribution
- 4.2 The α and α0 models
- 4.3 Evaluation of results
- 5 Model of Rule TTC based on time series analysis
- 5.1 Problem framing
- 5.2 The β models
- 5.3 The γ models
- 6 Model of Rule TTC based on deep neural networks
- 6.1 The δn Model
- 6.2 The δννn Model
- 6.3 Comparison of the models performance
- 7 Network time to predict Transfer TTC and Rule TTC
- 7.1 Network Time for a single transfer
- 7.2 Network Time as a Transfer TTC and Rule TTC estimator
- 7.3 Results
- 8 FTS Queue Time to predict Transfer TTC and Rule TTC
- 8.1 FTS queue modeling
- 8.2 Modeling the FTS queue from Rucio data
- 8.3 Using FTS Queue Time as a Transfer TTC and a Rule TTC
- predictor
- 9 Results and conclusion
- 9.1 Models summary
- 9.2 Model κ
- 9.3 Model α
- 9.4 Models β(t0, ρ) and β∗(t0, ρ)
- 9.5 Model γ(t0, ρ, λ, ψ, ω)
- 9.6 Models δ and δνν
- 9.7 Models based on individual transfers
- 9.8 Conclusion and nal remarks
- 10 Future work
- 10.1 Possible extensions to the δνν model
- 10.2 More complex auto-regressive models