Mining large streams of user data for personalized recommendations

Detalles Bibliográficos
Autor Principal: Amatriain, Xavier
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1145/2481244.2481250
Consultar en el Cátalogo
Resumen:The Netflix Prize put the spotlight on the use of data mining and machine learning methods for predicting user preferences. Many lessons came out of the competition. But since then, Recommender Systems have evolved. This evolution has been driven by the greater availability of different kinds of user data in industry and the interest that the area has drawn among the research community. The goal of this paper is to give an up-to-date overview of the use of data mining approaches for personalization and recommendation. Using Netflix personalization as a motivating use case, I will describe the use of different kinds of data and machine learning techniques. After introducing the traditional approaches to recommendation, I highlight some of the main lessons learned from the Netflix Prize. I then describe the use of recommendation and personalization techniques at Netflix. Finally, I pinpoint the most promising current research avenues and unsolved problems that deserve attention in this domain.
Notas:Formato de archivo PDF.
Descripción Física:1 archivo (2,4 MB)
DOI:10.1145/2481244.2481250

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170500.0
008 230201s2012 xxu o 000 0 eng d
024 8 |a DIF-M8046  |b 8262  |z DIF007349 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Amatriain, Xavier 
245 1 0 |a Mining large streams of user data for personalized recommendations 
300 |a 1 archivo (2,4 MB) 
500 |a Formato de archivo PDF. 
520 |a The Netflix Prize put the spotlight on the use of data mining and machine learning methods for predicting user preferences. Many lessons came out of the competition. But since then, Recommender Systems have evolved. This evolution has been driven by the greater availability of different kinds of user data in industry and the interest that the area has drawn among the research community. The goal of this paper is to give an up-to-date overview of the use of data mining approaches for personalization and recommendation. Using Netflix personalization as a motivating use case, I will describe the use of different kinds of data and machine learning techniques. After introducing the traditional approaches to recommendation, I highlight some of the main lessons learned from the Netflix Prize. I then describe the use of recommendation and personalization techniques at Netflix. Finally, I pinpoint the most promising current research avenues and unsolved problems that deserve attention in this domain. 
534 |a SIGKDD Explorations, 2012, 14(2), pp. 37-48 
650 4 |a MINERÍA DE DATOS 
650 4 |a APRENDIZAJE AUTOMÁTICO 
650 4 |a PERSONALIZACIÓN 
650 4 |a ALGORITMOS 
653 |a Netflix 
856 4 0 |u http://dx.doi.org/10.1145/2481244.2481250 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A1104  |7 3  |8 BD  |9 82687  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A1104  |r 2025-03-11 17:05:00  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=2058  |w 2025-03-11  |y CP 
999 |c 57124  |d 57124