Document summarization using a scoring-based representation

Detalles Bibliográficos
Autor Principal: Villa Monte, Augusto
Otros autores o Colaboradores: Lanzarini, Laura Cristina, Rojas Flores, Luis, Olivas Varela, José Angel
Formato: Capítulo de libro
Lengua:español
Temas:
Acceso en línea:http://dx.doi.org/10.1109/CLEI.2016.7833396
Consultar en el Cátalogo
Resumen:Currently, data repositories contain a plethora of information in different formats, most of which consists of text. This situation has raised interest in the study of techniques to automate the identification of the most relevant sentences of a document with the goal of generating a text summary. This article presents a technique for extracting the most representative sentences in a document, employing a user-defined criteria. The criteria is learned by the system using an optimization technique and a training document where the user has ranked the sentences according to their relevance. The proposed method has been applied to a five-chapter thesis with good results. At the end of this paper we provide some conclusions as well as ideas for future work.
Notas:Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (311,1 kB)
DOI:10.1109/CLEI.2016.7833396

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170452.0
008 230201s2016 xx o 000 0 spa d
024 8 |a DIF-M7759  |b 7978  |z DIF007088 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Villa Monte, Augusto 
245 1 0 |a Document summarization using a scoring-based representation 
300 |a 1 archivo (311,1 kB) 
500 |a Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Currently, data repositories contain a plethora of information in different formats, most of which consists of text. This situation has raised interest in the study of techniques to automate the identification of the most relevant sentences of a document with the goal of generating a text summary. This article presents a technique for extracting the most representative sentences in a document, employing a user-defined criteria. The criteria is learned by the system using an optimization technique and a training document where the user has ranked the sentences according to their relevance. The proposed method has been applied to a five-chapter thesis with good results. At the end of this paper we provide some conclusions as well as ideas for future work. 
534 |a Latin American Computing Conference (CLEI) (42ta : 2016 : Valparaiso, Chile)  
650 4 |a MINERÍA DE DATOS 
700 1 |a Lanzarini, Laura Cristina 
700 1 |a Rojas Flores, Luis 
700 1 |a Olivas Varela, José Angel 
856 4 0 |u http://dx.doi.org/10.1109/CLEI.2016.7833396 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0916  |7 3  |8 BD  |9 82335  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0916   |r 2025-03-11 17:04:52  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1661  |w 2025-03-11  |y CP 
999 |c 56864  |d 56864