An algorithmic implementation of the Pi function based on a new sieve

Detalles Bibliográficos
Autor Principal: Gulich, Damián
Otros autores o Colaboradores: Funes, Gustavo, Lofeudo, Nahuel, Garavaglia, Leopoldo, Garavaglia, Mario
Formato: Capítulo de libro
Lengua:inglés
Acceso en línea:Consultar en el Cátalogo
Resumen:In this paper we propose an algorithm that correctly discards a set of numbers (from a previously defined sieve) with an interval of integers. Leopoldo's Theorem states that the remaining integer numbers will generate and count the complete list of primes of absolute value greater than 3 in the interval of interest. This algorithm avoids the problem of generating large lists of numbers, and can be used to compute (even in parallel) the prime counting function π(h).
Descripción Física:1 archivo (269 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170450.0
008 230201s2008 xx r 000 0 eng d
024 8 |a DIF-M7691  |b 7910  |z DIF007020 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Gulich, Damián 
245 1 0 |a An algorithmic implementation of the Pi function based on a new sieve 
300 |a 1 archivo (269 KB) 
520 |a In this paper we propose an algorithm that correctly discards a set of numbers (from a previously defined sieve) with an interval of integers. Leopoldo's Theorem states that the remaining integer numbers will generate and count the complete list of primes of absolute value greater than 3 in the interval of interest. This algorithm avoids the problem of generating large lists of numbers, and can be used to compute (even in parallel) the prime counting function π(h). 
534 |a arXiv: 0802.3770 
700 1 |a Funes, Gustavo 
700 1 |a Lofeudo, Nahuel 
700 1 |a Garavaglia, Leopoldo 
700 1 |a Garavaglia, Mario 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0168  |7 3  |8 BD  |9 82236  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0168  |r 2025-03-11 17:04:50  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=1595  |w 2025-03-11  |y CP 
999 |c 56796  |d 56796