E-mail processing with fuzzy soms and association rules

Detalles Bibliográficos
Autor Principal: Lanzarini, Laura Cristina
Otros autores o Colaboradores: Villa Monte, Augusto, Estrebou, César Armando
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://goo.gl/wpeSGx
Consultar en el Cátalogo
Resumen:E-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (372,4 KB)

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170421.0
008 230201s2011 xx o 000 0 eng d
024 8 |a DIF-M6682  |b 6819  |z DIF006095 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Lanzarini, Laura Cristina 
245 1 0 |a E-mail processing with fuzzy soms and association rules 
300 |a 1 archivo (372,4 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a E-mail texts are hard to process due to their short length. In this article, the use of a diffuse neural network that is capable of identifying the most relevant terms in a set of e-mails is proposed. The associations between these terms will be measured through association rules built with the terms identified by the network. The metrics support, confidence and interest of the rules will be used to qualify the corresponding terms. The method proposed has been used to process e-mails of the PACENI Project (Support Project for Improving First-Year Teaching in Courses of Studies in Exact and Natural Sciences, Economic Science and Computer Science). With this type of analysis, the most common topics of student questions have been identified. Even though this new information can have various applications, they all involve, as a first instance, an improvement in student service. 
534 |a Journal of Computer Science & Technology, 11(1), pp. 41-46 
650 4 |a ALMACENAMIENTO Y RECUPERACIÓN DE INFORMACIÓN 
650 4 |a MINERÍA DE DATOS 
650 4 |a REGLAS DE ASOCIACIÓN 
650 4 |a CORREO ELECTRÓNICO 
700 1 |a Villa Monte, Augusto 
700 1 |a Estrebou, César Armando 
856 4 0 |u http://goo.gl/wpeSGx 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0427  |7 3  |8 BD  |9 81055  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0427  |r 2025-03-11 17:04:21  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=707  |w 2025-03-11  |y CP 
999 |c 55877  |d 55877