Particle swarm optimization with variable population size

Detalles Bibliográficos
Autor Principal: Lanzarini, Laura Cristina
Otros autores o Colaboradores: Leza, María Victoria, De Giusti, Armando Eduardo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-540-69731-2_43
Consultar en el Cátalogo
Resumen:At present, the optimization problem resolution is a topic of great interest, which has fostered the development of several computer methods forsolving them. Particle Swarm Optimization (PSO) is a metaheuristics which has successfully been used in the resolution of a wider range of optimization problems, including neural network training and function minimization. In its original definition, PSO makes use, during the overall adaptive process, of a population made up by a fixed number of solutions. This paper presents a new extension of PSO, called VarPSO, incor- porating the concepts of age and neighborhood to allow varying the size of the population. In this way, the quality of the solution to be obtained will not be affected by the used swarms size. The method here proposed is applied to the resolution of some com- plex functions, finding better results than those typically achieved using a fixed size population.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (437,6 KB)
DOI:10.1007/978-3-540-69731-2_43

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170419.0
008 230201s2008 xx o 000 0 eng d
024 8 |a DIF-M6590  |b 6729  |z DIF006010 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Lanzarini, Laura Cristina 
245 1 0 |a Particle swarm optimization with variable population size 
300 |a 1 archivo (437,6 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a At present, the optimization problem resolution is a topic of great interest, which has fostered the development of several computer methods forsolving them. Particle Swarm Optimization (PSO) is a metaheuristics which has successfully been used in the resolution of a wider range of optimization problems, including neural network training and function minimization. In its original definition, PSO makes use, during the overall adaptive process, of a population made up by a fixed number of solutions. This paper presents a new extension of PSO, called VarPSO, incor- porating the concepts of age and neighborhood to allow varying the size of the population. In this way, the quality of the solution to be obtained will not be affected by the used swarms size. The method here proposed is applied to the resolution of some com- plex functions, finding better results than those typically achieved using a fixed size population. 
534 |a Artificial Intelligence and Soft Computing - ICAISC 2008 : 9th International Conference Zakopane, Poland, June 22-26, 2008 Proceedings. Berlín : Springer, 2008. (Lecture Notes in Computer Science ; 5097), pp. 438-449 
650 4 |a COMPUTACIÓN EVOLUTIVA 
650 4 |a OPTIMIZACIÓN 
650 4 |a MÉTODOS HEURÍSTICOS 
700 1 |a Leza, María Victoria 
700 1 |a De Giusti, Armando Eduardo 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-69731-2_43 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0348  |7 3  |8 BD  |9 80966  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0348  |r 2025-03-11 17:04:19  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=616  |w 2025-03-11  |y CP 
999 |c 55792  |d 55792