|
|
|
|
LEADER |
00000naa a2200000 a 4500 |
003 |
AR-LpUFIB |
005 |
20250311170417.0 |
008 |
230201s2008 xx o 000 0 eng d |
024 |
8 |
|
|a DIF-M6520
|b 6659
|z DIF005940
|
040 |
|
|
|a AR-LpUFIB
|b spa
|c AR-LpUFIB
|
100 |
1 |
|
|a Britos, Paola Verónica
|
245 |
1 |
0 |
|a Bayesian networks optimization based on induction learning techniques
|
300 |
|
|
|a 1 archivo (210,4 KB)
|
500 |
|
|
|a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
|
520 |
|
|
|a Obtaining a bayesian network from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper, we define an automatic learning method that optimizes the bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees with those of the bayesian networks.
|
534 |
|
|
|a Artificial Intelligence in Theory and Practice : IFIP 20th World Computer Congress, TC 12: IFIP AI 2008 Stream, September 7-10, 2008, Milano, Italy. Springer, 2008. (IFIP - The International Federation for Information Processing ; 276), pp. 439-443
|
650 |
|
4 |
|a RED BAYESIANA
|
650 |
|
4 |
|a APRENDIZAJE AUTOMÁTICO
|
650 |
|
4 |
|a ÁRBOLES
|
650 |
|
4 |
|a MINERÍA DE DATOS
|
700 |
1 |
|
|a Felgaer, Pablo
|
700 |
1 |
|
|a García Martinez, Ramón
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-0-387-09695-7_44
|
942 |
|
|
|c CP
|
952 |
|
|
|0 0
|1 0
|4 0
|6 A0287
|7 3
|8 BD
|9 80890
|a DIF
|b DIF
|d 2025-03-11
|l 0
|o A0287
|r 2025-03-11 17:04:17
|u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=547
|w 2025-03-11
|y CP
|
999 |
|
|
|c 55722
|d 55722
|