Bayesian networks optimization based on induction learning techniques

Detalles Bibliográficos
Autor Principal: Britos, Paola Verónica
Otros autores o Colaboradores: Felgaer, Pablo, García Martinez, Ramón
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-0-387-09695-7_44
Consultar en el Cátalogo
Resumen:Obtaining a bayesian network from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper, we define an automatic learning method that optimizes the bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees with those of the bayesian networks.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (210,4 KB)
DOI:10.1007/978-0-387-09695-7_44

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170417.0
008 230201s2008 xx o 000 0 eng d
024 8 |a DIF-M6520  |b 6659  |z DIF005940 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Britos, Paola Verónica 
245 1 0 |a Bayesian networks optimization based on induction learning techniques 
300 |a 1 archivo (210,4 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a Obtaining a bayesian network from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper, we define an automatic learning method that optimizes the bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees with those of the bayesian networks. 
534 |a Artificial Intelligence in Theory and Practice : IFIP 20th World Computer Congress, TC 12: IFIP AI 2008 Stream, September 7-10, 2008, Milano, Italy. Springer, 2008. (IFIP - The International Federation for Information Processing ; 276), pp. 439-443 
650 4 |a RED BAYESIANA 
650 4 |a APRENDIZAJE AUTOMÁTICO 
650 4 |a ÁRBOLES 
650 4 |a MINERÍA DE DATOS 
700 1 |a Felgaer, Pablo 
700 1 |a García Martinez, Ramón 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-09695-7_44 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0287  |7 3  |8 BD  |9 80890  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0287  |r 2025-03-11 17:04:17  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=547  |w 2025-03-11  |y CP 
999 |c 55722  |d 55722