Relating higher-order and first-order rewriting
Autor Principal: | |
---|---|
Otros autores o Colaboradores: | , |
Formato: | Capítulo de libro |
Lengua: | inglés |
Temas: | |
Acceso en línea: | http://dx.doi.org/ 10.1093/logcom/exi050 Consultar en el Cátalogo |
Resumen: | We define a formal encoding from higher-order rewriting into first-order rewriting modulo an equational theory E. In particular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty equational theory (that is, E = ∅). This class includes of course the λ-calculus. Our technique does not rely on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of substitution in an abstract way. The axiomatic framework specifies the properties to be verified by a substitution calculus used in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order rewriting, in which the substitution calculus is the parameter of the translation. |
Notas: | Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) |
Descripción Física: | 1 archivo (435,2 KB) |
DOI: | 10.1093/logcom/exi050 |