The intensional lambda calculus

Detalles Bibliográficos
Autor Principal: Artemov, Sergei
Otros autores o Colaboradores: Bonelli, Eduardo
Formato: Capítulo de libro
Lengua:inglés
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-540-72734-7_2
Consultar en el Cátalogo
Resumen:We introduce a natural deduction formulation for the Logic of Proofs, a refinement of modal logic S4 in which the assertion PA is replaced by [[s]]A whose intended reading is "s is a proof of A". A term calculus for this formulation yields a typed lambda calculus λI that internalises intensional information on how a term is computed. In the same way that the Logic of Proofs internalises its own derivations, λI internalises its own computations. Confluence and strong normalisation of λI is proved. This system serves as the basis for the study of type theories that internalise intensional aspects of computation.
Notas:Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Descripción Física:1 archivo (285,8 KB)
DOI:10.1007/978-3-540-72734-7_2

MARC

LEADER 00000naa a2200000 a 4500
003 AR-LpUFIB
005 20250311170302.0
008 230201s2007 xx o 000 0 eng d
024 8 |a DIF-M6509  |b 6647  |z DIF003007 
040 |a AR-LpUFIB  |b spa  |c AR-LpUFIB 
100 1 |a Artemov, Sergei 
245 1 0 |a The intensional lambda calculus 
300 |a 1 archivo (285,8 KB) 
500 |a Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) 
520 |a We introduce a natural deduction formulation for the Logic of Proofs, a refinement of modal logic S4 in which the assertion PA is replaced by [[s]]A whose intended reading is "s is a proof of A". A term calculus for this formulation yields a typed lambda calculus λI that internalises intensional information on how a term is computed. In the same way that the Logic of Proofs internalises its own derivations, λI internalises its own computations. Confluence and strong normalisation of λI is proved. This system serves as the basis for the study of type theories that internalise intensional aspects of computation. 
534 |a Logical Foundations of Computer Science. Berlín : Springer, 2007. (Lecture Notes in Computer Science; 4514), pp. 12-25 
650 4 |a CÁLCULO LAMBDA 
650 4 |a LENGUAJES FORMALES 
650 4 |a LENGUAJES DE PROGRAMACIÓN 
700 1 |a Bonelli, Eduardo 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-72734-7_2 
942 |c CP 
952 |0 0  |1 0  |4 0  |6 A0275  |7 3  |8 BD  |9 77693  |a DIF  |b DIF  |d 2025-03-11  |l 0  |o A0275  |r 2025-03-11 17:03:02  |u http://catalogo.info.unlp.edu.ar/meran/getDocument.pl?id=536  |w 2025-03-11  |y CP 
999 |c 52862  |d 52862