Capturing Connectivity and Causality in Complex Industrial Processes

Detalles Bibliográficos
Autor Principal: Yang, Fan
Otros autores o Colaboradores: Duan, Ping, Shah, Sirish L., Chen, Tongwen
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:SpringerBriefs in Applied Sciences and Technology,
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-05380-6
Resumen:This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian networks can be used to identify pair-wise relationships and network topology. These methods rely on the notion of information fusion whereby process operating data is combined with qualitative process knowledge, to give a holistic picture of the system.
Descripción Física:xiii, 91 p. : il.
ISBN:9783319053806
ISSN:2191-530X
DOI:10.1007/978-3-319-05380-6

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000466
003 AR-LpUFI
005 20220927105903.0
007 cr nn 008mamaa
008 140401s2014 gw | s |||| 0|eng d
020 |a 9783319053806 
024 7 |a 10.1007/978-3-319-05380-6  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
100 1 |a Yang, Fan.  |9 261147 
245 1 0 |a Capturing Connectivity and Causality in Complex Industrial Processes   |h [libro electrónico] /   |c by Fan Yang...[et al.]. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xiii, 91 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Examples of Applications for Connectivity and Causality Analysis -- Description of Connectivity and Causality -- Capturing Connectivity and Causality from Process Knowledge -- Capturing Causality from Process Data -- Case Studies. 
520 |a This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways: ·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and ·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian networks can be used to identify pair-wise relationships and network topology. These methods rely on the notion of information fusion whereby process operating data is combined with qualitative process knowledge, to give a holistic picture of the system. 
650 0 |a Engineering.  |9 259622 
650 0 |a Chemical engineering.  |9 259863 
650 0 |a Mathematical models.  |9 259695 
650 0 |a Statistics.  |9 259824 
650 0 |a Complexity, Computational.  |9 259624 
650 0 |a Control engineering.  |9 259595 
650 2 4 |a Complexity.  |9 260162 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |9 260973 
650 2 4 |a Industrial Chemistry  |9 259864 
650 2 4 |a Physics, Computer Science, Chemistry and Earth Sciences.  |9 261148 
700 1 |a Duan, Ping.  |9 261149 
700 1 |a Shah, Sirish L.  |9 261150 
700 1 |a Chen, Tongwen.  |9 261151 
776 0 8 |i Printed edition:  |z 9783319053790 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-05380-6 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27894  |d 27894