Learning Motor Skills From Algorithms to Robot Experiments /

Detalles Bibliográficos
Autor Principal: Kober, Jens
Otros autores o Colaboradores: Peters, Jan
Formato: Libro
Lengua:inglés
Datos de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.
Series:Springer Tracts in Advanced Robotics, 97
Temas:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-03194-1
Resumen:This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first authorâ_Ts doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.
Descripción Física:xvi, 191 p. : il.
ISBN:9783319031941
ISSN:1610-7438 ;
DOI:10.1007/978-3-319-03194-1

MARC

LEADER 00000Cam#a22000005i#4500
001 INGC-EBK-000337
003 AR-LpUFI
005 20220927105809.0
007 cr nn 008mamaa
008 131123s2014 gw | s |||| 0|eng d
020 |a 9783319031941 
024 7 |a 10.1007/978-3-319-03194-1  |2 doi 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
100 1 |a Kober, Jens.  |9 260824 
245 1 0 |a Learning Motor Skills   |h [libro electrónico] : ;   |b From Algorithms to Robot Experiments /  |c by Jens Kober, Jan Peters. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xvi, 191 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 97 
505 0 |a Reinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives. 
520 |a This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first authorâ_Ts doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award. 
650 0 |a Automation.  |9 259787 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Robotics and Automation.  |9 260825 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Peters, Jan.  |9 260826 
776 0 8 |i Printed edition:  |z 9783319031934 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03194-1 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27765  |d 27765